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§1 September 11, 2017

§1.1 Introduction

Machine design deals with the planning, construction, and analysis of machine elements.
This course covers the basic principles of machine component design. This will include
the design for stiffness, strength, and endurance, Some examples of machine elements
include shafts, gears, belts, chains, bearing, and pulleys. There are different types of
machine design:

• Adaptive design is a design in which we make minor modifications in the existing
product. An example is the diesel engine.

• Developed design involves the creation of a new design from a previous basis.
Examples include electronic devices.

• New design involves the creation of a machine component made from scratch. An
example could be solar plants.

There are different reasons to design new machine components. The general steps of
machine design are summarized below.

1. Need: concerns the decision of whether to purchase a product, or to make a new
one.

2. Mechanism: concerns the

3. Analysis of Forces: concerns the types of forces acting on a body or machine
element.

4. Material Selection: concerns the appropriate selection of materials in order to
reduce costs.

5. Design of Machine Elements: concerns determining the dimensions of the compo-
nent.

6. Modification of Design: concerns the introduction of small changes to the design.

7. Detailed Drawing: concerns the presentation of complete information regarding
drawings, symbols, or specifications.

8. Production or Manufacturing: concerns the actual product, or a 3D printed replica.

§2 September 14, 2017

§2.1 Types of Beams

• A simply supported beam has vertical reaction forces at ends A and B.

• A cantilever beam is supported by a moment and reaction force at A, and is not
supported at B.

• A fixed beam is supported by a moment and reaction force at both ends A and
B.

• An overhanging beam is supported by reaction forces A and B for beam ABC.

Most of class wasted on reviewing shear force and bending moment diagrams.
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§3 September 19, 2017

§3.1 Factor of Safety

The factor of safety will always be greater than one, and is a ratio of the maximum stress
to the working (allowable) stress. For a ductile material, the maximum stress is the yield
stress. This occurs at the second bump in a stress-strain graph. The failure (breaking)
point occurs shortly after reaching the yield stress. For the linear region, recall that we
can apply Young’s modulus. For a brittle material, the maximum stress is the ultimate
stress. For a brittle material, there is no bump, and the breaking point is reach abruptly
after reaching maximum stress.

When choosing a factor of safety, we must consider many different factors. The
following are some

• Material Selection: Consideration needs to be made with regards to whether the
material is ductile or brittle.

• Types of Loading: The factor of safety made be dependent on static, variable, or
impact-shock loading.

• Cost: A high factor of safety may result in a higher cost. There must therefore be
a balance between cost and factor of safety.

• Importance of Machine Part in Machine: If the machine part plays a critical
role, it may require a higher factor of safety. Alternatively, the part may require
replacement after a certain number of years.

• Safety to Human Life: Machine failure that may result in the loss of human life
should require a higher factor of safety.

• Life of Component: A longer expect lifespan of a component would require a greater
factor of safety.

§3.2 Static Body Stresses

When an external load is applied to a member, body stresses exist within a member.
There are different types of stress.

• Tensile stress is stress that is produced in a member from a pull type of loading,
and is denoted by σt. It causes elongation along the axis of the applied stress.
Tensile stress is given by

σ =
P

A
.

• Compressive stress is stress that is produced in a member due to a push type of
loading, and is denoted by σc. It causes shortening along the axis of the applied
stress. The sign for compressive stress is negative by convention, so the equation
for compressive stress is

σ = −P
A
.

Both tensile and compressive stress occur under axial loading.

• Shear stress is stress that is produced in a member when a load is tangential to
the cross sectional area, and is denoted by τ . This is given by

τ =
P

A
.
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Note that there may be occurrences of double shear, where the area in consideration
is doubled. Shear stress occurs under direct shear loading.

• Torsional shear stress is stress that occurs in a rotating member. It results from
the twisting of an object due to an applied torque. This is given by

τ =
Tc

J
,

where T is the torque, c is the radius, and J is the polar moment of inertia. For a
round bar of radius c, it is given by J = πc4/2. If we have a hollow rod with outer
radius c1 and inner radius c0, then this becomes J = π

(
c41 − c40

)
/2. For rectangular

sections, the maximum shear stress is given by

τmax =
T (2a+ 1.8b)

a2b2
,

where a is the longer length, and b is the shorter length. Torsional stress results
from torsional loading.

• Crushing stress is localized stress acting on a member irrespective of the type
of loading. A load P applied is divided by the area of A = πdL, where d is the
diameter of a bolt or pint, and L is the length of the bolt along which the load is
exerted.

• Bearing stress is stress that is most frequently found in continuously rotating
members. The shaft is usually made of a hard material such as steel, while the
bush is made of a soft material such as rubber. The area is also given by A = πdL.

• Bending stress is stress that results from bending, and is denoted by σB. It can
be calculated as

σB =
Mc

I
,

where M is the bending moment, c is the displacement from the centroid, and I
is the second moment of inertia, which is given as I = πc4/4 for round bars, and
bh3/12 for rectangular sections. Bending stress results from pure bending loading.
Pure bending occurs when the shear V = 0.

• Transverse shear stress is stress that is produced as a result of shear along a
beam. This is given by

τ =
QV

It
,

where V is the shear force, Q is the first moment with respect to the neutral axis, I
is the moment of inertia about the same axis, and t is the thickness. In this course,
we make use of the generalized formula

τ =
V

It

∫ y=c

y=y0

ydA.

We may choose to determine the maximum values of shear stress at the neutral
axis of solid round sections, thin hollow round sections, and rectangular sections.
The expression becomes respectively

τmax =
4V

3A
,
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τmax =
2V

A
,

τmax =
3V

2A
.

Transverse shear stress occurs due to transverse shear loading.

§4 September 26, 2017

§4.1 Mohr’s Circle Review

Recall that to plot Mohr’s circle, we first determine the stresses σx, σy, and τxy = τyx. We
then plot the normal and shear stresses acting on the x and y faces, with τ counterclockwise
taken as negative and τ clockwise taken as positive. We then draw a line connecting
these two points, indicating the diameter of the circle. Note that angles measured on the
circle are twice the corresponding angles on the actual element.

From this, we can determine σavg = (σx + σy)/2, the radius from R = τmax =√
(σy − σavg)2 + τ2xy, the principal stresses σmax,min = σavg ± τmax, and the principal

planes from tan(2φ) = τxy/(σy − σavg).
We can now study three-dimensional stress as it occurs in real three-dimensional bodies.

Uniaxial stress (pure tension or compression) involve three principal stresses, with two
of them zero. Likewise, biaxial stress has one principal stress zero. A complete Mohr’s
circle representation in three dimensions would include circles of stresses between σ1 and
σ2, between σ1 and σ3, and between σ2 and σ3. The largest of the three Mohr circles
represents the maximum shear stress, as well as the two extreme values of normal stress.

Example 4.1

A member at a certain location has three-dimensional stress given by σx = 60000psi,
σy = 40000psi, σz = −20000psi, τxy = 10000psi, τyz = 20000psi, and τzx =
−15000psi. Determine the principal normal stresses and maximum shear stress.

Solution. For three-dimensional stress, we solve the characteristic equation to determine
the principal normal stresses. This is given by the equation

σ3 − I1σ2 + I2σ − I3 = 0,

where
I1 = σx + σy + σz,

I2 = σxσy + σyσz + σzσx − τ2xy − τ2yz − τ2zx,

I3 = σxσyσz + 2τxyτyzτzx − σxτ2yz − σyτ2zx − σzτ2xy.

Solving this, we find σ1 = 69600psi, σ2 = 38001psi, and σ3 = −27601psi, where
σ1 > σ2 > σ3. Now, τ13 = ‖σ1 − σ3‖/2 = 48600psi, τ21 = ‖σ2 − σ1‖/2 = 15799psi, and
τ32 = ‖σ3 − σ2‖/2 = 3280psi. Therefore, τmax = 49600psi. �

On a Mohr diagram, τmax is obtained by plotting the circles for σ1, σ2, and σ3 (last one
usually equal 0). Drawing the larger circle that surrounds all of these smaller circles, we
find that the radius is τmax.
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§5 October 3, 2017

§5.1 Stress Concentration Factors

We note that the uniform distribution of force flow lines is an idealization, and only exists
in regions substantially removed from the ends. Near the ends however, the force flow
lines indicate concentrations of stress near the outer surface. We can now evaluate the
maximum stresses existing in a part.

In recent years, finite-element analysis has resulted in many graphs that give values of
the theoretical stress concentration factor Kt. This is given as

σmax = Ktσnom,

τmax = Ktτnom,

where nom denotes values calculated using the original formulas, and max denotes the
maximum corresponding value.

For grooved shafts, we need to consider whether the shaft is under bending, axial
load, or torque. Then, comparing the ratio of r with the inner diameter d or the ratio
of d to D, we find the corresponding Kt from the corresponding stress concentration
factor graphs. These graphs also provide appropriate formulas for calculating the nom
values.

Example 5.1

A shaft is supported by bearings at locations A and B and is loaded with a downwards
1000N force at 500mm from A. 250mm to the right of this is B. The diameter at
the ends A and B are 40mm, while the larger diameter in the middle is 80mm. The
fillet from end B until the diameter increases is 70mm, and r = 5mm. Determine
the maximum stress at the shaft fillet.

Solution. First, we need to find the reaction forces by summing the moments at A and
B and equating them to zero. Doing so, we find that A = 333N, and B = 667N. Now,
we draw the shear and bending moment diagrams. We can then find the moment at
the fillet to be 47Nm. Using this, we calculate σ = Mc/I = 7.5MPa. We know that
the ratio is r/d = 5/40 = .125. Doing so, we obtain Kt = 1.65, so our final stress is
1.65(7.5) = 12.4MPa. �

§5.2 Thermal Stresses

Recall that stresses caused by constrained expansion and contraction may be due to
temperature changes or material phase changes. When the temperature of an unrestrained
homogeneous body is changed uniformly, then

ε = α∆T,

where ε is the strain, α is the coefficient of thermal expansion, and ∆T is the change
in temperature. Unrestrained volume change produces no shear strain and no stresses.
However, if restraints are placed on the body undergoing temperature change, then
the stresses can be determined by the superposition principle by first considering the
dimension changes resulting from the temperature change, then considering the required
loads required to enforce the restrained dimensions. The resulting stresses can then be
computed from these loads.

7



David Ng Machine Component Design

Example 5.2

A 250mm length of steel tubing (with properties of E = 207 · 109Pa and a =
12 · 10−6/◦C) having a cross-sectional area of 625mm2 is installed with fixed ends
so that it is stress-free at 26◦C. In operation, the tube is heated throughout to
a uniform 249◦C. Careful measurements indicate that the fixed ends separate by
0.20mm. Determine the loads that are exerted on the ends of the tube, and what
the resultant stresses are.

Solution. For an unrestrained tube, we have ε = α∆T = 12∗10(−6)∗(249−26) = 0.002676.
Thus, ∆L = Lε = 250(0.002676) = 0.6675mm. Since the measured expansion was
only 0.2mm, the constraints must apply forces sufficient to produce a deflection of
δ = 0.6675 − 0.2 = 0.4675mm. Using the equation δ = PL/AE, we get σ = P/A =
387.09MPa. �

§6 October 5, 2017

§6.1 Failure Theories

Consider a test of the yield strength of a material under tension. The theory behind
the various classical failure theories is that whatever is responsible for failure in the
standard tensile test will also be responsible for failure under all other conditions for
static loading. For instance, suppose that the theory states that failure occurs during
the tensile test because the material was unable to withstand a certain tensile stress.
The theory then predicts that under any conditions of loading, the material will fail if
and only if normal stress exceeds that value. On the other hand, suppose that a theory
claims that failure during the tensile test occurs because the material is limited in its
ability to resist a certain shear stress. Failure would then occur when this value is exceed
in shear.

Example 6.1

Under the general loading of a proposed application, a certain material has σ1 = 80,
σ2 = −40, and σ3 = 0. By plotting on Mohr’s circle, we find that τmax = 60. Under
the standard tensile test of that same material where only tension is applied, we
have σ′1 = 100 and σ′2 = σ′3 = 0. Drawn on Mohr’s circle, this gives τmax′ = 50. If
the theory was based on tensile stress, then failure would not be expected in the
proposed application, since 80 < 100. However, if the theory was based on shear,
then failure would be expected to occur in the proposed application since 60 > 50.

Various failure theories are presented below.

• Maximum Normal Stress Theory: Failure will occur whenever the greatest
tensile or compressive stress is greater than the uniaxial tensile strength or the
uniaxial compressive strength respectively. This is very suitable for brittle fracture,
but is not suitable to predict failure for ductile materials. Consider two Mohr
circles corresponding to uniaxial compressive strength Suc to the left of the origin
and to uniaxial tensile strength Sut to the right of the origin. So long as the normal
stress σ is between these two values, the material will not fail.

• Maximum Shear Stress Theory: A material subject to any combination of
loads will fail by yielding or fracturing whenever the maximum shear stress exceeds
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the shear strength (yield or ultimate) of the material. Thus, we plot Syt and obtain
τmax from the plot of of the corresponding Mohr circle. If τmax is exceeded in a
particular application, we would expect failure to occur.

• Maximum Distortion Energy Theory Any elastically stressed material under-
goes a slight change in shape or volume. The energy required to produce this change
is stored in the material as elastic energy. The formula to obtain the equivalent
elastic stress is

σe =

√
2

2

√
(σ2 − σ1)2 + (σ3 − σ1)2 + (σ3 − σ2)2.

In the case for biaxial stress and direct stress, we obtain the following equations
respectively.

σe =
√
σ21 + σ22 − σ1σ2,

σe =
√
σ2x + σ2y − σxσy + 3τ2xy.

Note that if only σx and τxy exist, then the last formula simplifies to

σe =
√
σ2x + 3τ2xy.

Once the equivalent stress is obtained, this is compared with the yield strength
from the standard tensile test. If σe exceeds Syt, yielding is predicted.

Example 6.2

Strain gage tests have established that the critical location on the surface of a steel
part is subjected to principal stresses of σ1 = 35ksi and σ2 = −25ksi. The surface
is exposed and unloaded, so σ3 = 0. The steel has a yield strength of Syt = 100ksi.
Estimate the safety factor with respect to initial yielding using the preferred theory.
Compare this with results given by other failure theories.

Solution. For distortion energy theory, we obtain

σe =
√
σ21 + σ22σ1σ2

=
√

352 + (−25)2 − (35)(−25)

= 52.2

The factor of safety is therefore SF = Syt/σe = 100/52.5 = 1.9. For shear stress theory,
we find that the principal stresses define a Mohr circle with a radius of ‖σ1 − σ2‖/2 =
(35− (−25))/2 = 30. The standard tensile test gave a principal Mohr circle with a radius
of Syt/2 = 100/2 = 50. Thus, the safety factor is SF = 50/30 = 1.7. Using normal
stress theory, we have a maximum normal stress of 35ksi. Thus, the factor of safety is
SF = 100/35 = 2.9. �

§7 October 12, 2017

§7.1 Fatigue

The concept of fatigue concerns the small (and often microscopic) cracks at critical areas
of high local stress. Fatigue failure occurs as a result of repeated plastic deformations,
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such as the breaking of a wire after bending back and forth repeatedly. Fatigue failure
often occurs after many thousands of cycles of minute yielding at the microscopic level.
Thus, this type of failure can occur at stress levels far below the traditional yield point
or elastic limit. Strengthening vulnerable locations such as holes and sharp corners is
often as effective as making the part out of a stronger material. The R. R. Moore fatigue
test is often used to determine the fatigue strength characteristics of materials.

Tests against various weights allow one to produce S-N curves. The intensity of reversed
stress causing failure after a given number of cycles is the fatigue strength corresponding
to that number of loading cycles. Numerous tests have established that ferrous materials
have an endurance limit, defined as the highest level of alternating stress that can be
withstood indefinitely without failure. For materials where the endurance limit is clearly
defined, the knee denotes the first point at which the slope on the graph becomes zero.
The usual symbol for endurance limit is Sn, while S′n is used to denote standard lab
conditions. If we do not have lab data for S′n or S′, we can approximate the endurance
limit with correction factors

Sn = S′nCLCGCSCTCR,

where S′n is obtained from the R. R. Moore endurance test, CL is the load factor, CG is
the size (gradient) factor, CT is the temperature factor, CS is the surface factor, and CR
is the reliability factor. Su is the ultimate tensile strength, and Sus is the ultimate shear
stress.

1. The value of the endurance limit under lab conditions can be obtained through
experiment or through approximation. For steel, we have

Sn′ =

{
0.5Su if Su ≤ 1400MPa or 200ksi,

100ksi or 700MPa if Su > 1400MPa or 200ksi.

For iron, we have

Sn′ =

{
0.4Su if Su ≤ 60ksi,

24ksi if Su > 60ksi.

2. The surface factor CS relates the amount of surface damage that can be caused
by commercial processes based on the susceptibility of the material to damage. The
surface factor changes for different finishes applied to steels of various hardnesses.
It is obtained from Figure 8.13 of the textbook, or from

C = e(Su)f ,

where the constants e and f are obtained from the following table.

Manufacturing Process Factor e (MPa) Factor e (ksi) Exponent f

Grinding 1.58 1.34 -0.085
Machining or Cold Drawing 4.51 2.70 -0.265
Hot Rolling 57.7 14.4 -0.718
As Forged 272.0 39.9 -0.995

Example 7.1

Let Su = 520MPa, and the surface be a grinding surface. From the table, we find
that e = 1.58MPa and f = −0.085. Therefore, CS = 1.58(520)−0.085 ≈ 0.9285.
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3. The size (gradient) factor CG accounts for the differences in sizes of specimens
being tested. It is found using Table 8.1. If d is different from 0.3in, and it is
subjected to reversed bending or torsion, then it should carry a size factor of
CG = 0.9. The same is true for axial loads. We can also use the following formulas
for determining CG where values are in inches

CG =

{(
d
0.3

)−0.107
= 0.879d−0.107 0.11 ≤ d ≤ 2,

0.91d−0.157 2 ≤ d ≤ 10.

Alternatively, we can use the following formula for values in millimeters.

CG =

{(
d

7.62

)−0.107
= 1.24d−0.107 2.79 ≤ d ≤ 51,

1.51d−0.157 51 ≤ d ≤ 254.

If instead the loading is axial, then CG = 1. If the stationary shaft is under a
completely reverse torsional load, then we calculate by using the previous equation.
A circular or rectangular section that is not rotating is subject to reverse bending.

4. The loading factor CL relates the fact that it may not have the same loading as
in lab conditions. If it is in bending (as in the lab) or in axial or combined loading,
then CL = 1. For pure torsional loading, CL = 0.58.

5. The temperature factor CT accounts for the fact that the strength of a ma-
terial decreases with increased temperature. It can be obtained from Table 8.1.
Alternatively, it can be obtained from

CT = 0.875 + 0.432
(
10−3

)
Tf ,

where Tf is the temperature in Fahrenheit.

6. The reliability factor CR relates that a more reliable estimate of the endurance
limit requires using a lower value of the endurance limit. It is obtained from Table
8.1. For higher reliability, we desire to be more conservative.

Example 7.2

Estimate the S −N curve for the axial loading of precision commercially polished
steel parts having Su = 150ksi and Sy = 120ksi. The cross sectional diameter is less
than 2in. Determine the peak alternating stress S at 104 cycles.

Solution. We assume that CR = CT = 1 and take the gradient factor to be CG = 0.9
from Table 8.1. For the 103 cycle, we note that Sf = 0.75SuCT = 0.75(150)(1) = 112.5ksi.
For the 106 cycle, we approximate S′n = 0.5Su = 0.5(150) = 75ksi since we lack additional
data. Additionally, CL = 1, and Figure 8.13 for polished steel at Su = 150ksi is CS = 0.9.
Thus, we find that Sn = S′nCLCGCSCTCR = 75(1)(0.9)(0.9)(1)(1) = 60.75ksi. We can
then plot 112.5ksi at 103 and 60.75ksi at 106. To determine the peak alternating stress S
at a particular number of cycles in this range, we solve for S in

log(112.5)− log(60.75)

6− 3
=

log(S)− log(60.75)

6− log (104)
.

Doing so, we find that S = 91.6ksi. �
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§8 October 19, 2017

§8.1 Machine Components

Machine components can be classified into those that support mechanically generated
loads (such as welded joints, fasteners, and non-permanent joints), and those that
transform mechanical power through storage (springs and flywheels), dissipation
(brakes and clutch), and transmission. There are different types of transmissions.

• Rotational to Linear Motion: An example would be power screws. Power screws
are used to convert rotational motion to linear motion. This includes vices, testing
machines, presses, lathes, universal machines, and milling machines.

• Fluid to Rotational or Linear: Hydraulics and pneumatics are common examples.

• Rotational to Rotational: Gears, pulleys, belts, chains, bearings, shafts, seals, key
couplings, and splines are examples.

§8.2 Power Screws

The following are common types of threads that are used for power screws.

1. Square Threads: The pitch p is from when the pattern repeats itself again
horizontally. The height is h, and the width is w = p/2. This maximizes the
efficiency and reduces the radial power. It is difficult to cut with taps and dies. It
is a single point tool. Examples include screw jacks, presses, and clamping devices.

2. ACME Threads: The pitch p is again from the distance that separates a repeated
instance of the pattern. The width is w = .37p, and the height is h = 0.5p+ 0.25.
the angle reduces the efficiency compared to square threads. This is more easy to
manufacture compared to square threads.

3. Buttress Threads: The pitch is the distance at which the pattern repeats. The
width is w = 0.125p and the height is h = 0.75p.

We shall derive an expression for the effort P applied at the circumference of the
screw to lift the load. Because the load is being lifted, the force of friction is F = µRN .
Resolving forces along the plane and perpendicular to the plane, we obtain respectively,

P cos(α) = W sin(α) + F = W sin(α+ µRN ,

RN = P sin(α) +W cos(α).

Substituting the expression for RN into the first equation above, we obtain the following.

P cos(α) = W sin(α) + µ (P sin(α) +W cos(α))

P (cos(α)− µ sin(α)) = W (sin(α) + µ cos(α))

P =
W (sin(α) + µ cos(α))

cos(α)− µ sin(α)

12
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Now, we can substitute µ = tan(φ) into the equation.

P =
W (sin(α) + tan(φ)cos(α))

cos(α)− tan(φ) sin(α)

=
W (sin(α) cos(φ) + sin(φ)cos(α))

cos(α) cos(φ)− sin(φ) sin(α)

=
W sin(α+ φ)

cos(α+ φ)

= W tan(α+ φ)

§9 October 24, 2017

§9.1 Torque Required to Raise Load by Square Threaded Screws

1. Let L be the length of the horizontal lever, p be the pitch of the screw, d be
the mean diameter of the screw, α be the helix angle, P be the effort applied at
the circumference of the screw to lift the load, W be the load to be lifted, and
µ = tan(φ) be the coefficient of friction between the screw and the nut where φ is
the friction angle.

2. The mean diameter can be obtained from

d =
do + dc

2
= do −

p

2
= dc +

p

2
,

where dc is the core (inner, root, or minor) diameter and do is the nominal (outside
or major) diameter.

3. From the geometry, we find that tan(α) = p/πd, where α is the helix angle.

4. The ideal effort neglecting friction is Po = W tan(α), but the actual effort applied
to rotate the screw is

P = W tan(α+ φ),

where φ is obtained by considering friction.

5. Efficiency of screw thread is Po/P , so it is

η =
W tan(α)

W tan(α+ φ)
=

tan(α)

tan(α+ φ)
.

6. The torque required to rotate the screw is

T1 =
Pd

2
=
W tan(α+ φ)d

2
.

7. When the axial load is taken up by a thrust collar, the load does not rotate with
the screw. Thus, we can determine the torque required to overcome collar friction.

T2 = µ1W

(
R1 +R2

2

)
= µ1WR,

where R1 is the outside radius of the collar, R2 is the inside radius of the collar,
R = (R1 +R2)/2 is the mean radius of the collar, and µ1 is the coefficient of friction
for the collar. The equation above is used assuming uniform wear conditions.
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Alternatively, is we were to assume uniform pressure conditions, we obtain the
following formula instead.

T2 =
2

3
µ1W

(
(R1)

3 − (R2)
3

(R1)2 − (R2)2

)
.

8. The total torque required to overcome friction and rotate the screw can be found.

T = T1 + T2.

Remark 9.1. The speed of the screw in revolutions per minute is the speed in mm/min
divided by pitch of screw in mm. For acme threads, µ1 = µ/cos(B), where the angle
from the vertical to one slanted side is B.

§9.2 Torque Required to Lower Load by Square Threaded Screws

The friction force will be acting upwards. Therefore, the resolving force along the slanted
plane gives P cos(α) = F −W sin(α). Resolving forces perpendicular to this plane s
N = W cos(α)− P sin(α). Substituting the second equation into the first, we obtain

P cos(α) = µ(W cos(α)− P sin(α))−W sin(α)

P (cos(α) + µ sin(α)) = W (µ cos(α)− sin(α))

P = W
µ cos(α)− sin(α)

cos(α) + µ sin(α)

= W
tan(φ) cos(α)− sin(α)

cos(α) + tan(φ) sin(α)

= W
sin(φ) cos(α)− sin(α) cos(φ)

cos(α) cos(φ) + sin(φ) sin(α)

= W
sin(φ− α)

cos(φ− α)

= W tan(φ− α)

Remark 9.2. Contrast this with raising the load, which requires P = W tan(φ + α).
Since T = Pd/2, this becomes T = W tan(φ− α)d/2.

Example 9.3

A vertical screw with single start square threads of 50mm mean diameter and 12.5mm
pitch is raised against a load of 10 kN by means of a hand wheel, the boss of which is
threaded to act as a nut. The axial load is taken up by a thrust collar which supports
the wheel boss and has a mean diameter of 60mm. The coefficient of friction is 0.15
for the screw and 0.18 for the collar. If the tangential force applied by each hand to
the wheel is 100N, find suitable diameter of the hand wheel.

Solution. Let d = 50mm, p = 12.5mm, W = 10kN, R = 30mm, µ = tan(φ) = 0.15,
µ1 = 0.18, and P1 = 100N. We want to find the diameter D1. We know that tan(α) =
p/πd = 12.5/50π = 0.08. Now, we know that P = W tan(α + φ) = W (tan(φ) +
tan(α))/(1− tan(φ) tan(α)) = 10000(0.08 + 0.15)/(1− 0.08 ∗ 0.15) = 2328N. But then
the torque required to turn the hand wheel is T = Pd/2 + µ1WR = 2328(50)/2 +
0.18(10000)(30) = 112200Nmm. We know the torque applied to the hand wheel is
T = 2P1(D1)/2 = 2(100)(D1)/2, we equate both expressions for torque to find that
D1 = 1122mm. �
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§10 October 31, 2017

§10.1 Design of Screw Jack

There are various parts of a screw jack. To design a screw jack, we need to consider the
screwed spindle with square threaded screws, the nut and collar for the nut, the head
at the top of the screwed spindle for the handle, the cup at the top of the head for the
load, and the body of the screw jack. To design a screw jack for a load W , we adopt the
following procedure.

1. We first need to find the core diameter dc by considering the screw under pure
compression.

W = σcAc =
σcπ(dc)

2

4
,

where σc is the compressive stress.

2. Find the torque T1 required to rotate the screw and find the shear stress τ due to
this torque.

T1 =
Pd

2
=
W tan(α+ φ)d

2
,

where P is the load effort required at the circumference of the screw and d is the
mean diameter of the screw.

3. The shear stress due to torque T1 with core diameter dc can then be found.

τ =
16T1
π(dc)3

.

4. The direct compressive stress due to an axial load can also be found. The first
equation above can be rearranged to find the direct compressive stress σc due to
the axial load.

σc =
4W

π(dc)2
.

5. Next, the principal stresses are found. The following expressions are used to find
the maximum principal stress (tensile or compressive) and the maximum shear
stress.

σc(max) =
1

2

(
σc +

√
(σc)2 + 4τ2

)
,

τmax =
1

2

√
(σc)2 + 4τ2,

where both of these stresses should be less than the permissible stresses.

6. Find the height h of the nut considering the bearing pressure on the nut.

Pb =
W

π
4 ((d0)2 − (dc)2)n

,

where n is the number of threads in contact with the screw spindle and Pb is the
bearing pressure. Solving for n, this can be used to find the height of the nut
h = np, where p is the pitch of the threads.
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7. Check the stresses in the screw and the nut.

τscrew =
W

πndct
,

τnut =
W

πnd0t
,

where t is the thickness of the screw given by t = p/2.

8. Find the inner diameter D1 and the outer diameter D2. The inner diameter D1 is
obtained by considering the tearing strength of the nut, while the outer diameter
D2 is found by considering the crushing strength of the nut collar.

W =
π

4

(
(D1)

2 − (d0)
2
)
σt,

W =
π

4

(
(D2)

2 − (D1)
2
)
σc.

9. The thickness t1 of the nut collar is found by considering the shearing strength of
the nut collar.

W = πD1t1τ.

10. Next, we fix the dimensions for the diameter of head D3 on the top of the screw
and for the cup. Take D3 = 1.75d0. The seat for the cup is made equal tot eh
diameter of head and it is chamfered at the top. The cup is fitted with a pin of
diameter of approximately D4 = D3/4. This pin remains a loose fit in the cup.

11. Find the torque T2 required to overcome friction at the top of the screw. Assuming
uniform pressure conditions and alternatively assuming uniform wear conditions,
we obtain the following equations respectively.

T2 =
2

3
µ1W

(
(R3)

3 − (R4)
3

(R3)2 − (R4)2

)
,

T2 = µ1W
R3 +R4

2
= µ1WR,

where R3 = D3/2 is the radius of head, and R4 = D4/2 is the radius of pin.

12. Now, the total torque to which the handle will be subjected can be determined.

T = T1 + T2.

Assuming that a person can apply a force of around 300− 400N, the length of the
handle required is T/300.

13. The diameter of the handle D may be obtained by considering the bending effects.

M =
π

32
σbD

3,

where σb is equal to σt or σc.

14. The height of the head H is usually taken to be twice the diameter of the handle,
so H = 2D.
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15. We now check the screw for buckling load. The effective length (or unsupported
length) of the screw can be determined.

L = lift of screw +
1

2
height of nut.

The buckling or critical load can the be calculated.

Wcr = Acσy

(
1− σy

4Cπ2E

(
L

k

)2
)
,

where σy is the yield stress, C is the end fixity coefficient, and k = dc/4 is the radius
of gyration. The screw is considered to be a strut with the lower end fixed and the
load end free. For one end fixed and the other free, this means that C = 0.25. The
buckling load as obtained above must be greater than the load at which the screw
is designed.

16. Fix the dimensions for the body of the screw jack.

17. Find the efficiency of the screw jack.

§11 November 2, 2017

§11.1 Screw Jack Example

Example 11.1

A screw jack is to lift a load of 80kN through a height of 400mm. The elastic strength
of the screw material in tension and compression is 200MPa and in shear 120MPa.
The material for the nut is phosphor-bronze for which the elastic limit may be taken
as 100MPa in tension, 90MPa in compression, and 80MPa in shear. The bearing
pressure between the nut and the screw is not to exceed 18N/mm2. Design and
draw the screw jack. The design should include the design of the screw, the nut, the
handle and cup, and the body.

Solution. We know that W = 80kN at σet = σec = 200MPa.

W = σcAc =
π

4
(dc)

2 σec
FS

=
π

4
(dc)

2 200

FS
.

Using a factor of safety of 2, we find that dc = 32mm. For square threads of normal
series, we select the dimensions of the screw from Table 17.2. Doing so, we obtain the
outside diameter of the spindle d0 = 46mm and the pitch of threads p = 8mm. From
this table, we see that the next highest value of 32mm for the core diameter is 33mm.
However, by taking the core diameter to be this value, this results in higher principal
stresses than the permissible values. Thus, the core diameter is chosen to be 38mm. We
can now determine the mean diameter of the screw and find that

d =
d0 + dc

2
=

46 + 38

2
= 42mm,

tan(α) =
p

πd
=

8

42π
= 0.0606.
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Assuming that the coefficient of friction between the screw and the nut to be µ = tan(φ) =
0.14, the torque to rotate the screw in the nut becomes

T1 =
W tan(α+ φ)d

2
= W

(
tan(α) + tan(φ)

1− tan(α) tan(φ)

)
d

2
= 80000

(
0.0606 + 0.14

1− (0.0606)(0.14)

)
42

2
.

Solving this, we obtain T1 = 340000Nmm. Now, the compressive stress due to the axial
load and the shear stress due to the torque can be calculated.

σc =
W

Ac
=

W
π
4 (dc)2

=
80000
π
4 (38)2

= 70.53N/mm2,

τ =
16T1
π(dc)3

=
16(340000)

π(38)3
= 31.55N/mm2.

Thus, the maximum principal and shear stresses are

σc(max) =
1

2

(
σc +

√
(σc)2 + 4τ2

)
=

1

2

(
70.53 +

√
70.532 + 4(31.55)2

)
= 82.58N/mm2,

τmax =
1

2

√
(σc)2 + 4τ2 =

1

2

√
70.532 + 4(31.55)2 = 47.315N/mm2.

But the given value of σc = σec/FS = 200/2 = 100N/mm2 and the given value of
τ = τe/FS = 120/2 = 60N/mm2. Since the maximum stresses are within limits, the
design of the screw for spindle is safe.

Now designing for the nut, let n be the number of threads in contact with the screwed
spindle, h = np be the height of the nut, and t = p/2 = 8/2 = 4mm be the thickness of
the screw, where p is the pitch of the threads found previously. Assuming that the load
is distributed uniformly over the cross-sectional area of the nut, with the knowledge that
the bearing pressure is Pb = 18N/mm2,

18 =
W

π
4 ((d0)2 − (dc)2)n

=
80000

π
4 (462 − 382)n

=
151.6

n
.

Solving, we find that n = 8.4, which we round to 10 threads. Thus, h = np = 10(8) =
80mm. Since t = p/2 = 8/2 = 4mm, we can check the stresses induced in the screw and
nut.

τscrew =
W

πndct
=

80000

π(10)(38)(4)
= 16.15N/mm2,

τnut =
W

πnd0t
=

80000

π(10)(46)(4)
= 13.84N/mm2.

Since these stresses are also within the permissible limit, the design for the nut is safe.
We now find the inner diameter, the outer diameter, and the thickness t1 of the nut collar
using σt = σet/FS = 100/2MPa, σc = σec/FS = 90/2MPa, and τ = τe/FS = 80/2MPa.

80000 =
π

4

(
(D1)

2 − (d0)
2
)
σt =

π

4

(
(D1)

2 − (46)2
) 100

2
= 39.3

(
(D1)

2 − 2116
)
.

Solving this gives D1 = 65mm. This is used to find the outer diameter.

80000 =
π

4

(
(D2)

2 − (D1)
2
)
σc =

π

4

(
(D2)

2 − (65)2
) 90

2
= 35.3

(
(D2)

2 − 4225
)
.

Solving this gives D2 = 80.6. We will say that this rounds to 82mm. Lastly, the thickness
of the nut collar can be found.

80000 = πD1t1τ = π(65)t1
80

2
= 8170t1.
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Solving this gives t1 = 9.8, or approximately 10mm.
Next, we design for the handle and the cup. The diameter of the head is D3 = 1.75d0 =

1.75(46) = 80.5 ≈ 82mm. Thus, D4 = 82/4 = 20.5 ≈ 20mm. Now, assuming uniform
pressure conditions, we can find the torque T2 required to overcome friction at the top of
the screw assuming that µ1 = µ = 0.14.

T2 =
2

3
µ1W

(
(R3)

3 − (R4)
3

(R3)2 − (R4)2

)
=

2

3
(0.14)(80000)

((
82
2

)3 − (202 )3(
82
2

)2 − (202 )2
)

= 7470

(
413 − 103

412 − 102

)
.

Thus, we find that T2 = 321000Nmm, and then apply this to find the total torque.

T = T1 + T2 = 340000 + 321000 = 661000Nmm.

Assuming that a force of 300N is applied by the person, the length of the handle is
661000/300 = 2203mm. Allowing some length for gripping, we take the length of the
handle to be 2250mm. Considering that an excessive force applied to the end of the
lever causes bending, we find that the maximum bending moment of the handle is
M = 300(2250) = 675000Nmm. Assuming that the material handle is the same as that
of the screw, we have σb = σt = σet/2 = 200/2 = 100N/mm2.

675000 =
π

32
(100)D3 = 9.82D3.

Solving, we find that D = 40.96 ≈ 42mm. Thus, the height of the head is H = 2D =
2(42) = 84mm. Now, the effective length of the buckling screw can be determined. From
the problem description, we know that we need to lift through 400mm, and from previous
calculation, we found that h = 80mm.

L = lift of screw +
1

2
height of nut = 400 +

80

2
= 440mm.

By taking σy = σet = 200MPa, C = 0.25, and k = dc/4 = 38/4 = 9.5mm, we can
calculate the critical load.

Wcr =
π

4
(38)2(200)

(
1− 200

4(0.25)π2210000

(
440

9.5

)2
)

= 226852(1− 0.207) = 179894N.

Since the critical load is more than the load that the screw is designed for at 80000N,
there is no chance for the screw to buckle.

Various dimensions of the body can be fixed as follows.

D5 = 1.5D2 = 1.5(82) = 123mm,

t3 = 0.25d0 = 0.25(46) = 11.6 ≈ 12mm,

D6 = 2.25D2 = 2.25(82) = 185mm,

D7 = 1.75D6 = 1.75(185) = 320mm,

t2 = 2t1 = 2(10) = 20mm,

hbody = lift of screw + height of nut + 100 = 400 + 80 + 100 = 580mm.

We can additionally find the efficiency of the screw jack. Neglecting friction, the torque
T0 required to rotate the screw can be determined.

T0 =
W tan(α)d

2
= 80000(0.0606)

(
42

2

)
= 101808Nmm.

The efficiency η can therefore be determined.

η =
T0
T

=
101808

661000
= 0.154.

�
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§12 November 7, 2017

§12.1 Shafts

A shaft is a rotating machine element that either reduces power, transmits power, or
both. Shafts are of circular cross-section, and may be solid or hollow depending on the
application. The two types of shafts that we will consider are transmission shafts, and
machine shafts.

1. Transmission Shafts: These shafts receive power from one end and deliver power at
the other end. For example, a motor attached to a pulley at one end of the shaft
transmits power to the other end of a shaft with a gear.

2. Machine Shafts: These shafts are an integral part of a machine, or are the main
member of a machine. For example, a crank-shaft in an engine.

The material of most shafts are either mostly steel, or medium carbon steel. Generally,
materials used for shafts have high strength, good machinability, and low notch sensitivity
factors. They also have good heat treatment properties and high wear resistant properties.

The power of shafts is given in killowatts, or horse power.

PkW =
Fv

1000
=

Tω

1000
=
T (2πn)

60000
=

Tn

9549
,

where F is the force in N, v is the velocity in m/s, T is the torque in Nm, n is the shaft
speed in rpm, and ω is the angular velocity in rad/s. In English and British units, we
obtain a different expression for power of a shaft.

Php =
Fv

33000
=
T (2πn)

33000
=

Tn

5252
,

where F is the force in lb, v is the velocity in fpm, T is the torque in lbft, and n is the
shaft speed in rpm.

§12.2 Design of Shafts

Shafts may be designed on the basis of strength, or rigidity and stiffness. When designing
shafts based on strength, we may consider the cases where the shaft is subject to
twisting moment or torque only, to bending moment only, to combined twisting and
bending moments, or to axial loads in addition to combined torsional and bending
loads.

Example 12.1 (Strength Criteria)

A solid shaft transmits 1MW at 240rpm. Determine the diameter of the shaft if the
maximum permissible torque exceeds the mean torque by 20%. Take the maximum
allowable shear stress as 60MPa.

Solution. We know that we have a solid shaft, the power is 106W or 103kW, and the
speed is 240rpm. We can rearrange the power equation to solve for the mean torque.
Doing so, we find that T = 60(P )/(2πn) = 60(106)/2(π)(240) = 39788.7Nm. Since
Tmax is twenty percent more, it is Tmax = 1.2T = 1.2(39788.7) = 47746Nm. Since the
maximum allowable shear stress is 60MPa, we solve for the strength criteria using the
equation

τ =
Tmaxc

J
,
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where J = πc4/2 and c is the radius. Substituting known values, we obtain 60000000 =
2(47746)/πc3. Solving this gives c = 0.0797m, so d = 2c = 0.159m. �

Example 12.2 (Rigidity Criteria)

A solid steel shaft transmits 20kW of power at 500rpm. If the maximum torque
exceeds the mean torque by 30%, calculate the diameter of the shaft. The shaft is
subject to a twist of 1◦ along a length of 2m. Take G = 0.84 · 105N/mm2.

Solution. We first find the torque using the same strategy as in the previous example.
Doing so, we find that T = 381.97Nm. Thus, the maximum torque is Tmax = 1.3T =
1.3(381.97) = 496.56Nm, which is also 496560Nmm. Using the rigidity criteria, we recall
that

φ =
TL

JG
.

Substituting φ = π/180rad, L = 2000mm, and the other known values, we find that the
radius is c = 25.6mm, so the diameter is d = 2c = 51.25mm. �

Example 12.3

A shaft made of mild steel is required to transmit 100kW at 300rpm. The supported
length of the shaft is 3m. It carries two pulleys each weighing 1500N supported at a
distance of 1m from the ends. Assuming the safe value of shear stress to be 60MPa,
determine the diameter of the shaft.

Solution. Since this shaft is subject to both twisting and bending, we will design based
on the twisting and bending moment. From the power expression, we find that the torque
is 3183000Nmm. Since the beam is symmetrically loaded, we find that the reactions at
both ends are 1500N directed upwards. The bending moment at the first pulley (which is
the same as the bending moment at the second pulley, and is also the maximum bending
moment) is 1500Nm, or 1500000Nmm. The equivalent twisting moment is given by

Teq =
√
T 2 +M2 =

√
31830002 + 15000002 = 3519000Nmm.

Using τ = Tc/J , we find that the radius c = 33.4mm, so d = 2c = 2(33.4) = 66.8mm. �

Example 12.4

A line shaft is driven by means of a motor placed vertically below it. The pulley
on the line shaft is 1.5m in diameter and has belt tensions of 5.4kN and 1.8kN on
the tight side and on the slack side of the belt respectively. Both of these tensions
may be assumed to be vertical. If the pulley is overhung from the shaft, with the
distance of the centerline of the pulley from the centerline of the bearing being
400mm, determine the diameter of the shaft. Assume the maximum allowable shear
stress to be 42MPa.

Solution. Note that the torque transmitted by the pulley is given by

T = (T1 − T2)R,
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where T1 is the larger force of 5.4kN, T2 is the smaller force of 1.8kN, and R is half of
the diameter of the pulley. Substituting values, we find that T = 2700Nm. The total
load due to the belt tension is

W = T1 + T2 = 5400 + 1800 = 7200N.

Thus, the bending moment acting on the shaft is M = 7200(400) = 2880Nm. The
equivalent twisting moment is therefore

Teq =
√
T 2 +M2 =

√
27002 + 28802 = 3950000Nmm.

Now, equating this with the strength criteria for the maximum allowable shear stress
of 42MPa using the formula τ = Tc/J , we find that the radius is c = 39.12mm, so
d = 2c = 2(39.12) = 78mm. �

§13 November 9, 2017

§13.1 Shaft Example

Example 13.1

Suppose we have a shaft with ends A and D, where A is to the left of B by 200mm,
B is left of C by 600mm, and C is left of D by 200mm. B and C are pulleys. Tension
T1 and T2 act downwards on both sides of pulley B, and T3 and T4 act on both
sides of C to the right, when viewed from A to D. The diameter of C is 250mm,
and the diameter of B is 500mm. Power is supplied by means of the vertical belt on
pulley B that is transmitted to pulley C carrying the horizontal belt. The maximum
tension of pulley B is 2.5kN, the angle of the wrap of the belts on the pulleys is
θ = 180◦, the coefficient of friction is µ = 0.24, the factor of safety is FS = 3, and
the maximum stress is Sy = 400MPa.

Solution. To solve these kinds of problems, we make repeated use of the following
properties.

T1
T2

= eµθ,

T = (T1 − T2)R,

where T1 is the greater tension compared to T2, µ is the coefficient of friction, θ is the
angle around the pulley for which the tensions act, and R is the radius of the pulley.

We know that the maximum tension on pulley B is T1 = 2500N, so we want to apply
the first equation above to determine the tension on the other side of the pulley. With
µ = 0.24 and θ = 180◦ = π, we find that

T2 =
T1
eµπ

=
2500

e0.24π
= 1176N.

Using the second equation above, we find

T = (T1 − T2)R1 = (2500− 1176)250 = 330882Nmm.

We still need to find T3 and T4 at C. But (T1 − T2)R1 = (T3 − T4)R2 since the torque
is the same on the shaft. We also know that T3/T4 = eµθ, so we can simultaneously solve
these two equations. Doing so, we find T3 = 5000N and T4 = 2353N.
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Now, we draw bending moment diagrams in both the vertical and horizontal direction.
First drawing the diagram in the vertical direction, we have T1 + T2 = 3676N downwards
at B. We can find the reaction forces at A and B in the vertical plane. Doing so,
we find Ay = 2941N and By = 735N. From the bending moment diagram, we find
that MB = 588200Nmm and MC = 147062Nmm. Now, we apply the above reasoning
in the horizontal direction. T3 + T4 = 7353N and the corresponding reaction forces
are Ax = 1470.6N and Bx = 5882.4N. From the bending moment diagram, this gives
MB = 294120Nmm and MC = 1176480Nmm.

We now find the resultant moments at B and C by combining the horizontal and
vertical terms. For B, this is

MB =
√
M2
Bx +M2

By =
√

2941202 + 5882002 = 657636.5Nmm.

For C, we obtain MC = 1185635.9Nmm.
Thus, we can determine the equivalent twisting moment by considering the torque

T = 330882Nmm with the greater of the two moments found previously.

Teq =
√
M2 + T 2 =

√
1185625.452 + 3308822 = 1230940.85Nmm.

Now, we apply the equation τ = Teqc/J . But recall that the maximum allowable shear
stress is τmax = (Sy/2)/FS = 400/6 = 66.7MPa. Thus, using this value of τ , we obtain
the radius c = 22.7mm, so d = 2c = 2(22.7) = 45mm. �

§13.2 Designing Shafts for Stress

For moment, we have the amplitude of oscillation Ma that goes from the amplitude to
the peak, and the offset of oscillation Mm which goes from the bottom to the average.

σm = Kf
32Mm

πd3
,

σa = Kf
32Ma

πd3
,

where Kf is the fatigue stress concentration factor that can be found from Kf =
1 + (Kt − 1)q. For torque, we similarly have the amplitude of oscillation Ta that goes
from the amplitude to the peak, and the offset of oscillation Tm which goes from the
bottom to the average.

τm = Kf
16Tm
πd3

,

τa = Kf
16Ta
πd3

.

Usually, we neglect axial loading when we design a shaft. This is because the important
loadings to consider are bending and twisting. For distortion energy failure theory, we
utilize fatigue stress concentration factor Kf and fatigue stress concentration factor for
shear stress Kfs.

σa =
√
σ2a + 3τ2a =

√(
32KfMa

πd3

)2

+ 3

(
16KfsTa
πd3

)2

,

σm =
√
σ2m + 3τ2m =

√(
32KfMm

πd3

)2

+ 3

(
16KfsTm
πd3

)2

.

For each of the following methods, we solve for the diameter d or the factor of safety FS.
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• DE Goodman Method:

1

FS
=

16

πd3

(
1

Sn

√
4 (KfMa)

2 + 3 (KfsTa)
2 +

1

Su

√
4 (KfMm)2 + 3 (KfsTm)2

)
,

d =

(
16n

π

(
1

Sn

√
4 (KfMa)

2 + 3 (KfsTa)
2 +

1

Su

√
4 (KfMm)2 + 3 (KfsTm)2

))1/3

.

• DE ASME Elliptic Method:

1

FS
=

16

πd3

√
4

(
KfMa

Sn

)2

+ 3

(
KfsTa
Se

)2

+ 4

(
KfMm

Sy

)2

+ 3

(
KfsTm
Sy

)2

,

d =

16n

π

√
4

(
KfMa

Sn

)2

+ 3

(
KfsTa
Se

)2

+ 4

(
KfMm

Sy

)2

+ 3

(
KfsTm
Sy

)2
1/3

.

• DE Soderberg Method:

1

FS
=

16

πd3

(
1

Sn

√
4 (KfMa)

2 + 3 (KfsTa)
2 +

1

Sy

√
4 (KfMm)2 + 3 (KfsTm)2

)
,

d =

(
16n

π

(
1

Sn

√
4 (KfMa)

2 + 3 (KfsTa)
2 +

1

Sy

√
4 (KfMm)2 + 3 (KfsTm)2

))1/3

.

• DE Gerber Method:

1

FS
=

8A

πd3Sn

1 +

√
1 +

(
2BSn
ASu

)2
 ,

d =

8nA

πSn

1 +

√
1 +

(
2BSn
ASu

)2
1/3

,

where A and B are defined as

A =

√
4 (KfMa)

2 + 3 (KfsTa)
2,

B =

√
4 (KfMm)2 + 3 (KfsTm)2.

In the case of a stationary shaft, we have Mm = 0, so the offset is zero, and we just
have the amplitude of oscillation. We have a stationary (or static) shaft that is rotating
(completely reversed). When Ta = 0, this means that there is no amplitude of oscillation,
so the shaft is steady. Static failure occurs at the failure point

§14 November 16, 2017

§15 November 21, 2017

§15.1 Keys

A key is a piece of metal which is used to connect a shaft and a hub (boss) or hollow shaft
in order to prevent relative motion. The key material is the same as the shaft material,
and is subject to shear and crushing stresses. The following are different types of keys.
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• Sunk Keys: Half is inside the shaft, and the other half is inside the hub. Sunk
keys include rectangular keys, square sunk keys, parallel sunk keys, gib-head keys,
feather keys, and woodruff keys. For rectangular and square keys, refer to a table
by looking up the values required at a given shaft diameter. All that remains is
to find the length of the key. Gib head keys look similar to square keys with a
head at one end, and are used for easy assembly or disassembly. Based on the shaft
diameter, we can find the width w and thickness t from Table 13.1 of Machine
Design by R. S. Khurmi and J. K. Gupta.

• Saddle Keys: This includes both flat saddle and hollow saddle keys. A flat saddle
key is a taper key that fits in the keyway in the hub and is flat on the shaft. It
is likely to slip around the shaft under load, so it is used for relatively light loads.
A hollow saddle key is a taper key that is shaped to fit the curved surface of the
shaft. They are suitable for temporary fastening.

• Tangent Keys: These are fitted in pairs at right angles. Each key is to withstand
torsion in one direction only. These types of keys are generally used in heavy duty
shafts.

• Round Keys: They are circular in section and fit into holes drilled between the
shaft and the hub. They are advantageous in that their keyways may be drilled
after the mating parts are assembled. Round keys are most appropriate for lower
power drives.

• Splines: These keys are made integrated into the shaft which fits in the keyway
broached in the hub. These splined shafts have four, six, ten, or even sixteens splines.
Splined shafts are usually used when the force transmitted is large compared to
the size of the shaft. For instance, they are used in automobile transmission and
sliding gear transmissions.

§15.2 Strength of Keys

We may consider various types of failure for the key. When solving problems, we generally
solve for length, and take the length to be the longer of the two obtained when considering
shear and crushing stresses.

1. Considering the shear failure of the key, we note that the area resisting the shear is
given by A = wl, where w is the width, and l is the length. The tangential force is
given by Ft = wlτ . Since the torque transmitted by the key is given by T = Ftd/2.
Thus, considering shear stress only, we find that

T =
wlτd

2
,

where d is the shaft diameter, τ is the shear stress, w is the width of the key
obtained from the table, l is the length of the key, and T is the torque obtained.

2. Considering the crushing are of tl/2, we find that Ft = tlσcr/2. Thus, the torque
due to the crushing force is

T =
tlσcrd

4
,

where t is the thickness, and σcr is the crushing stress.

To find the length of the key that permits transmission of full power of the shaft, we equate
the shearing strength of the key to the torsional shear strength of the shaft.
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Example 15.1

Design the rectangular key for a shaft of 50mm diameter. The shearing and crushing
stress for the key material are 42MPa and 70MPa respectively.

Solution. Referring to the table, we find that w = 16mm, and t = 10mm for a shaft
diameter of 50mm. Additionally, we are given that τ = 42MPa and σcr = 70MPa.
Therefore, considering the shearing of the key, we find that the torque is T = wlτd/2 =
16(l)(42)(50)/2 = 16800lNmm. But from the standard equation for torque, we have
T = πτd3/16 = π(42)(50)3/16 = 1.03 · 106Nmm. Thus, solving for l, we find that
l = 61.31mm according to shearing stress.

Considering the crushing of the key, we find that T = tlσcrd/4 = (1)(l)(70)(50)/4 =
8750lNmm. From the previous calculation for torque where it was found that T =
1.03 · 106Nmm, we find that l = 117.7mm. We use the length for the length of the
rectangular key. �

Example 15.2

A 45mm diameter shaft is made of steel with a yield strength of 400MPa. A parallel
key of size 14mm wide and 9mm thick made of steel with a yield strength of 340MPa
is to be used. Find the required length of the key if the shaft is loaded to transmit
the maximum permissible torque. Use maximum shear stress theory and assume a
factor of safety equal to 2.

Solution. From the maximum shear stress theory, we have τmax = Sy/4 = 400/4 =
100MPa, since the factor of safety is 2. Now, we can use this to find the torque from
T = πτd3/16 = π(100)(45)3/16 = 1.8 · 106Nmm. Applying the same for the key,
we find τ = 340/4 = 85MPa, and T = wlτd/2 = (14)(l)(85)(45)/2. Solving with
T = 1.8 · 106Nmm from before, we find that l = 67.2mm.

Now with regards to crushing stress, we find that σcr = Sy/FOS = 340/2 = 170Nmm.
But T = tlσcrd/4 = (9)(l)((170)(45)/4 = 17213l. Solving with T = 1.8 · 106Nmm, we
find that l = 104.6mm. Thus, we choose the longer length as the length of the key. �

§15.3 Coupling

Since long shafts are inconvenient to transport, shorter shafts are often connected by
means of a coupling. A coupling is a mechanical element which connects two shafts
together. It is used for connection, alignment, and shock loading. Flange coupling applies
to coupling with two separate cast iron flanges. Each flange is mounted on the shaft end
and keyed to it. The design procedure is described below.

1. Design for the Hub: The hub is designed by considering it as a hollow shaft,
transmitting the same torque T as that of a solid shaft.

T =
πτc
16

(
D4 − d4

D

)
,

where τc is the allowable shear stress of the flange (cast iron), D is the outer
diameter of the hub, and d is the diameter of the shaft. The outer diameter of hub
is usually taken as 2d, and the length of the hub as 1.5d. The induced shearing
stress in the hub may be checked using the torque equation above.
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2. Design for Key: The key is designed with usual proportions and then checked for
shearing and crushing stresses. The material of the key is generally the same as
the shaft, and the length of the key is equal to the length of the hub, L. Use the
key design procedure described previously.

3. Design for Flange: The flange is under shear while transmitting the torque.

T =
πD2τctf

2
,

where the thickness of flange is usually taken as tf = 0.5d. Therefore, the induced
shearing stress in the flange may be checked agains the torque equation above. The
outer diameter of the flange is taken to be D3 = 4d, while the thickness of the
protective flange is taken to be tp = 0.25d.

4. Design for Bolts: The bolts are subjected to shear stress due to the torque trans-
mitted. The number of bolts n depends upon the diameter of shaft, and the pitch
circle diameter of the bolts D1 = 3d.

T =
π (d1)

2 τbn

4

(
D1

2

)
,

where τb is the allowable shear stress for the bold, and the diameter of bolt d1 may
be obtained by substituting known values. After obtaining the diameter of the bolt
d1, we can optionally check against the crushing stress in the bolts,

T =
nd1tfσcbD1

2
,

where σcb is the allowable crushing stress for the bolt.

Example 15.3

Design a cast iron flange coupling for a mild steel shaft transmitting 90kW at 250rpm.
The allowable shear in the shaft is 40MPa. The angle of twist is not to exceed
φ = π/180rad in a length of 20d, where d is the diameter. The allowable shear stress
for coupling bolts is 30MPa, and the modulus of rigidity is G = 84kN/mm2. The
cast iron shear stress is 14MPa.

Solution. We note that the power is 90000W, and the speed is n = 250rpm. We can find
the torque from P = 2πnT/60. Solving, we find that T = 90000(60)/(2π(250)) = 3440Nm.
Setting this equal to T = πτd3/16 = π(40)(d)3/16, we find that d = 76mm. This is based
on the strength criteria. Now, we solve according to the rigidity criteria. From here,
we find the diameter d from φ = TL/(JG) by using T = 3440Nm and the values given.
We find that d = 78mm in this case. Thus, choosing the larger of the two, we choose
d = 78mm, so l = 156mm.

Now, we design the hub by approximating the shaft diameter as 80mm, where Dhub =
2Dshaft. Thus, Dhub = 2(80) = 160mm. The length of the hub is Lhub = 1.5Dshaft,
so this means that Lhub = 1.5(80) = 120mm. We will consider the hub as a hollow
shaft subject to shear. Assuming that the flange and the hub are made of the same
material (cast iron), then τallow = 14MPA. Therefore, the torque transmitted by the hub
is T = πτhub

(
D4

1 −D4
)
/16D1 = 3440 · 103 = πτhub

(
1604 − 804

)
/16(160). This results

in τhub = 4.56N/mm2. Since the shear stress of the hub is less than the allowable shear
stress, then the hub is safe under shear.
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Next, we will design the key. First, we must select the key dimensions for the 80mm
diameter of the shaft. Referring to the table, we obtain the width and the thickness. For
80mm, we find that w = 25mm and t = 14mm. Considering the key under shear stress,
T = wlτD/2. Substituting, we find that 3440 · 103Nmm = 25(120)τ(80)/2. We find that
τ = 28.7N/mm2, which is less than the allowable shear in the shaft of 40MPa. Note that
we do not consider crushing stress, since the problem does not give information on this.

We will design the flange. Let D3 = 4Dshaft = 4(80) = 320mm be the outer diameter
of the flange. The thickness of the flange is tf = 0.5D = 0.5(80) = 40mm. The thickness
of the protective flange is tp = 0.25Dshaft = 0.25(80) = 20mm. We want to see whether
this is safe under shear. Considering the shear failure of the flange, the shearing area
is πD1tf . The shearing strength of the flange gives T = πD1tfτD1/2 = 3400000 =
π(160)(40)τ(160)/2. Solving, we find τ = 2.14N/mm2. Since this value is less than the
permissible shear of 14MPa, the flange is find under shear.

Finally, we design the bolts. Let D2 = 3Dshaft = 3(80) = 240mm be the pitch
circle diameter for the bolts. Considering the bolts under shear, the shearing area is
A = πd2c/4. Thus, letting n = 4 be the number of bolts, we can determine the diameter
dc. T = AnτboltD2/2 = 340000 = πd2c(4)(30)(240)/8. Solving, we find d2c = 304, so
dc = 17.4mm. Rounding up, we obtain dc = 20mm.

�

§16 November 23, 2017

§16.1 Design of Rolling-Element Bearings

The materials for bearings. Ball bearings including rings and balls are usually made
from high carbon chrome steel. Roller bearing elements are made from carburized alloy
steel. The cleanliness of the steel is extremely important, and tolerance is critical as well.
When the load angle α = 0◦, we have a radial ball bearing, while α = 25◦ means we have
an angular ball bearing.

When calculating the life of a known bearing, we first refer to Table 14.1 first to obtain
the bore diameter of the specified bearing. Then, we refer to Table 14.2 to obtain the
rated capacity C corresponding to that series and bore diameter. When determining
which bearing to use, we arrive at a rated capacity using the formulas introduced below.
Then, we choose the next largest C in each of the relevant bearing series from Table
14.2 in order to find the associated bore diameter. This allows us to use Table 14.1 to
determine each of the permissible bearings that could be used for this application.

When selecting bearings, we are often concerned with the life, and the reliability of
bearings. Designing for life, we use the exponent e = 10/3 for all bearings. The life L of
the bearing is given as follows.

L = LR

(
C

Fr

)3.33

,

C = Fr

(
L

LR

)0.3

,

where C is the rated capacity found in Table 14.2, LR is the life corresponding to the
rated capacity (9 · 106 revolutions), Fr is the radial load, and L is the life corresponding
to the radial load.

When we also want to factor in reliability as well, we include the reliability factor Kr.

L = KrLR

(
C

Fr

)3.33

,
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C = Fr

(
L

KrLR

)0.3

,

where the reliability factor Kr is dependent on the percentage of reliability desired from
Figure 14.3.

Occasionally, we may also be interested in supported an axial load with the bearings. For
ball bearings, any combination of radial load Fr and thrust load Ft result in approximately
the same life as a pure radial equivalent load Fe which is calculated as follows. For α = 0,

Fe =


Fr if 0 < Ft/Fr < 0.35,

Fr

(
1 + 1.115

(
Ft
Fr
− 0.35

))
if 0.35 < Ft/Fr < 10,

1.176Ft if Ft/Fr > 10.

For α = 25,

Fe =


Fr if 0 < Ft/Fr < 0.68,

Fr

(
1 + 0.870

(
Ft
Fr
− 0.68

))
if 0.68 < Ft/Fr < 10,

0.991Ft if Ft/Fr > 10.

Because the standard rated capacities are for conditions of uniform load without shock,
we may also need to introduce an application factor Ka when shock loading occurs. This
can be obtained from the following table.

Type of Application s Ball Bearing Roller Bearing

Uniform load, no impact 1.0 1.0
Gearing 1.0-1.3 1.0
Light Impact 1.2-1.5 1.0-1.1
Moderate Impact 1.5-2.0 1.1-1.5
Heavy Impact 2.0-3.0 1.5-2.0

Now, we can substitute Fe the equivalent load for Fr and introduce Ka to obtain the
following equations.

L = KrLr

(
C

FeKa

)3.33

,

C = FeKa

(
L

KrLR

)0.3

,

where the life can be chosen from the following table.

Type of Application Design Life
(thousands of hours)

Instruments and apparatus for infrequent use 0.1-0.5

Machines used intermittently, where service interruption is 4-8
of minor importance

Machines intermittently used, where reliability is of great 8-14
importance

Machines for 8-hour service, but not every day 14-20

Machines for 8-hour service, every working day 20-30

Machines for continuous 24-hour service 50-60

Machines for continuous 24-hour service where reliability 100-200
is of extreme importance
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Example 16.1

Select a ball bearing for an industrial machine press fit onto a shaft and intended for
continuous one shift (8 hours/day) operation at 1800 rpm. The radial and thrust
loads are 1.2kN and 1.5kN respectively. Light to moderate load impact .

Solution. We know that Ft = 1.5kN and Fr = 1.3kN. Since we have light to moderate
impact for the ball bearing, we find from Table 14.3 that Ka = 1.5. Additionally,
n = 1800rpm and they are used for 8h/day. Ft/Fr = 1.5/1.2 = 1.25. When α = 0, we
find that the ratio Ft/Fr is between 0.35 and 10, so for radial bearing,

Fe = Fr (1 + 1.115(Ft/Fr − 0.35)) = 1.2 (1 + 1.115(1.25− 0.35)) = 2.4kN.

For α = 25◦, we have angular bearing,

Fe = Fr

(
1 + 0.870

(
Ft
Fr
− 0.68

))
= 1.2(1 + 0.870(1.25− 0.68)) = 1.8kN.

Since we know Ka, and we know that the life L = 30000 · 1800 · 60min/h = 3240 · 106

revolutions from Table 14.4 (working 8 hour service every day, we choose 30 thousand),
we can combine this with 90% reliability from Table 14.13 to obtain Kr = 1. Therefore,
we find for the radial bearing that

C = 2.4(1.5)

(
3240 · 106

90 · 106

)0.3

= 10.55kN,

For the angular result, we find

C = 1.8(1.5)

(
3240

90

)0.3

= 7.9kN.

Now, from Table 14.2, we choose the next largest C of any of the possible radial/angular
bearing choices. These have a corresponding bore diameter. Then, refer to Table 14.3 to
obtain the exact bearing type of the series by matching with the bore diameter. �

§17 December 5, 2017

§17.1 Spur Gears

Gears are toothed members that transmit rotary motion from one shaft to another. Spur
gears in particular are the most common type of gears, and are used to transfer motion
between parallel shafts using teeth that are parallel to the shaft axes.

In any pair of mating gears, the smaller of the two is called the pinion while the larger
is called the gear. Using the subscripts p and g to denote the pinion and gear respectively,
we can relate the pitch diameters d with the angular velocities ω, and define the center
distance c as follows.

ωp
ωg

= −dg
dp
,

c =
dp + dg

2
= rp + rg.

The circular pitch p is defined along the pitch circle by the distance between the start of
each each tooth. However, more commonly used indices of gear-tooth size are diametral
pitch P (used with English units only), and module m (used with metric units only).

p =
πd

N
,
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P =
N

d
,

m =
d

N
,

where d is the pitch diameter, N is the number of teeth in the gear or pinion, P is
measured in teeth per inch, and m is in millimeters per teeth. Note that the most
commonly used pressure angle with both English and metric units is φ = 20◦. In
the United States, 25◦ is also standard. The face width b must be within the ranges
9/P < b < 14/P or 9m < b < 14m.

The maximum possible addendum circle for the gear or pinion is given by the following
formula.

ra,max =
√
r2b + c2 sin2(φ),

where rb is the base circle radius of the pinion or gear, and φ is the pressure angle. The
average number of teeth in contact as the gears rotate together is known as the contact
ratio CR.

CR =

√
r2ap − r2bp +

√
r2ag − r2bg − c sin(φ)

pb
,

where rap and rag are the addendum radius of the pinion and gear, and rbp and rbg are
the base circle radius of the pinion and gear. We can now define the base pitch pb, and
the radius/diameter of the base circle.

pb =
πdb
N

= p cos(φ),

db = d cos(φ),

rb = r cos(φ).

In general, the greater the contact ratio, the smoother and quieter the operation of the
gears. A contact ratio of 2 or more means that at least two pairs of teeth are theoretically
in contact at all times.

Example 17.1

Two parallel shafts with 4in center distance are to be connected by 6-pitch, 20◦ spur
gears providing a velocity ratio of -3.0. Determine the pitch diameters and numbers
of teeth in the pinion and gear. Determine whether there will be interference when
standard full-depth teeth are used. Determine the contact ratio.

Solution. c = rp + rg, where c = 4in. We also have rg/rp = −ωp/ωg = −(−3) = 3.
Solving both of these, we find that rp = 1 and rg = 3. Thus, dp = 2in and dg = 6in.
Knowing that the diametral pitch P = 6, we have P = N/d, so Np = 2(6) = 12 teeth and
Ng = 6(6) = 36 teeth. We have rbp = rb cos(φ) = 1 cos(20) and rbg = rg cos(φ) = 3 cos(2).
Thus, we apply the formula for ra,max to find rap,max = 1.66in and rag,max = 3.133in.
The limiting outer gear radius results in an addendum of 0.133in, which is less than the
standard full-depth tooth addendum of 1/P = 1/6 = 0.167in. Thus, the use of standard
teeth would result in interference.

Thus, we will choose unequal addenda gears with ag = 0.060in and ap = 0.290in. These
are chosen to provide maximum addenda for greatest contact ratio, while limiting the gear
addendum to prevent interference, and limiting the pinion addendum to maintain the
width of the top land. Substitution into equations results in pb = (π/6) cos(20) = 0.492in,
rap = 1.290in, rbp = 1 cos(20), rag = 3.060in, rbg = 3 cos(20). This gives a contact ratio
of CR = 1.43 after substituting values, which is acceptable. �
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The force between mating teeth can be resolved at the pitch point into two components.
The tangential component Ft when multiplied by the pitch line velocity V accounts for
the power transmitted, while the radial component Fr does no work but tends to push
gears apart.

Fr = Ft tan(φ).

To analyze the relationships between gear force components and the associated shaft
power and rotating speed, we use the following formulas in English units.

V =
πdn

12
,

Php =
FtV

33000
,

where d is the pitch diameter in inches, n is the revolutions per minute, V is in feet per
minute, Ft is in pounds, and Php is the power in horsepower. For metric units, we have

V =
πdn

60000
,

PW = FtV,

where d is in millimeters, n is in rpm, V is in meters per second, Ft is in Newtons, and
PW is the power in Watts.

Example 17.2

Let the diametral pitch be P = 3, φ = 20, n = 600rpm, and Php = 25hp. Determine
Ft and Fr.

Solution. First, we apply equation find that dpitch = Na/P , where Na is the number of
teeth and P = 3 is the diametral pitch. Thus with 12 teeth, we have d = 4in. Next, we
find the pitch line velocity V = πdn/12 = π(4)(600)/12 = 628.28ft/min. We now apply
Php = FtV/33000 and solve for Ft = 33000(25)/628.28 = 1313lb. Now, Fr = Ft tan(20) =
1313 tan(20) = 478lb. Thus, the total gear tooth forces are Ft + Fr = 1791lb acting both
vertically and horizontally, resulting in a vector sum of 1719

√
2 = 2533lb acting at 45◦ as

the resultant load applied by the idler to its shaft. �
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§18 Quiz

Bearing chapter 14 from book[On FINALexam worth around 5%] spur gear chapter 15
coupling chapter 13 from other book.

rigid coupling , flange, one secured to each shaft. sleeve used for long shafts, or those
that can be aligned well.

flexible coupling take into account misalignment. chain coupling gear coupling, gear
mounted on shaft,

§18.1 Final

Shaft design lecture and tutorial coupling designe (protected flange, hush pin) textbook
no notes. (Chapter 17, shaft, coupling, keys) rolling bearing lement, spur gear chapter 13
tetbook of machine design khurmi,

§18.2 Final, December 5

power screw chapter 10, lecture and tutorial coupling (hub, key, shaft, bolt, flange)
chapter 13 bearing chapter 14, lecture and tutorial shaft chapter 17, lecture and tutorial
(SELECTED PROBLEMS) spur gear, tutorial 8.
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